
JOURNAL OF MATERIALS SCIENCE 32 (1997 ) 1121 — 1125

The stress in a zirconium alloy due to the hydride
precipitation misfit strains
Part I Hydrided region in an infinite solid or at a free surface

E. SMITH
Manchester University — UMIST Materials Science Centre, Grosvenor Street,
Manchester, M1 7HS, UK

In the context of modelling delayed hydride cracking (DHC), this paper shows that with

a lenticular shaped hydrided region, i.e. one whose length is large compared with its

thickness, the compressive stress rH induced within the region by hydriding is markedly

influenced by the unconstrained transverse precipitation strains as well as the

unconstrained normal strain. For the case of DHC initiation at a planar surface or the surface

of a very blunt flaw, the values of rH obtained by assuming (a) the overall unconstrained

expansion strain associated with hydride precipitation is confined entirely to the normal

direction or (b) the strain is partitioned approximately equally between the three orthogonal

directions, are approximately equal. This means that assuming the strain is entirely in the

normal direction allows for both precipitation strain scenarios.
1. Introduction
Delayed hydride cracking (DHC) can occur in a zirco-
nium alloy if the hydrogen concentration is sufficient
for the terminal solid solubility limit (TSS) of hydro-
gen in zirconium to be exceeded. It is caused by the
diffusion of hydrogen atoms to a stress concentration,
preferential precipitation and growth of hydride plate-
lets in favourably oriented grains, followed by fracture
of a hydrided region which consists of a distribution of
hydride platelets within a zirconium alloy matrix.
A hydrided region is usually lenticular in shape (its
length is large compared with its thickness), and the
tensile stress due to the applied loadings, enhanced in
the vicinity of a stress concentration, must over-ride
the induced compressive stress within a hydrided re-
gion to a sufficient extent for the region to fracture and
so lead to DHC initiation. The induced compressive
stress arises from the unconstrained expansion strains
associated with the precipitation of a hydride platelet.
In the context of modelling DHC, it is therefore im-
portant to quantify the compressive stress (normal to
the hydrided region) distribution within a lenticular
hydrided region, and in order to simplify the consider-
ations we will assume that the region is fully hydrided
and has a two-dimensional profile.

In determining the magnitude of the compressive
stress it is important to input the correct uncon-
strained expansion strains associated with hydride
formation. This poses a problem, because though it is
generally believed that the overall unconstrained ex-
pansion strain, i.e. the sum of the strains in three
mutually orthogonal directions, is about 17%, there is

dispute as to whether all this strain is confined to the
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direction normal to the plane of a lenticular hydrided
region as suggested by Weatherly [1] and as assumed
by the author [2—5] in his DHC initiation modelling
work, or whether it is partitioned approximately
equally between the three directions as suggested by
Carpenter [6], and as implicitly assumed by Shi and
co-workers [7, 8] in their DHC modelling work; they
assume a normal strain of 5.4%, but neglect the effect
of the in-plane expansion strains in their calculations.
The objective of the present paper is to explore, with
regard to a lenticular shaped two-dimensional hy-
drided region, the effect of the various unconstrained
expansion strain components on the magnitude of the
compressive stress within a hydrided region.

2. A general two-dimensional hydrided
region

Fig. 1 shows a general two-dimensional symmetric
hydrided region with length 2¸ and maximum thick-
ness t"2h. The compressive stress r

H
at the centre of

the region, i.e. the position x, due to the four edge
dislocations of Burger’s vector b

*
situated in the sym-

metric positions as indicated, is
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where E
0
"E/(1!m2), E being the Young’s modulus

and m being the Poisson’s ratio. (It is assumed that
both the hydrided region and the surrounding mater-
ial have the same elastic constants). Thus if e6 is the
22
unconstrained expansion strain (in the direction

1121



Figure 1 A general two-dimensional symmetric hydrided region of
maximum thickness t"2h and length 2¸.

normal to the region) associated with hydride precipi-
tation, the compressive stress r

H
at x arising from this

e6
22

strain is that due to a continuous distribution of
edge dislocations (with Burger’s vectors as shown in
Fig. 1) around the boundary of the region, such that
!e6

22
dx

2
/b

*
dislocations each of Burger’s vector

b
*

are contained within an element of vertical length
dx

2
. Thus r

H
is given by the expression

r
H
"!

E
0
e6
22

p P
¸

x
1
"0

x
1
(3x2

2
#x2

1
)

(x2
2
#x2

1
)2

dx
2

(2)

Similarly the compressive stress r
H

at the centre of the
region x due to four edge dislocations of Burger’s
vector b

*
situated in the same symmetric positions as

indicated in Fig. 1, but with their extra half planes in
the vertical direction and pointing inwards into the
region, is
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Thus if e6
11

is the unconstrained expansion strain, in
the direction of the plane of the region, associated with
hydride precipitation, the compressive stress r

H
at x is

that due to a continuous distribution of edge disloca-
tions, with Burgers vector’s, as mentioned earlier in
this paragraph, around the boundary of the region,
such that e6

11
dx

1
/b

*
dislocations, each of Burger’s

vector b
*
, are contained within an element of horizon-

tal length dx
1
. Thus, r

H
is given by the expression
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It therefore follows that, if hydride precipitation is
associated with an unconstrained expansion strain
e6
22

in the direction normal to the plane of the region
together with an unconstrained expansion strain
e6
11

in the direction of the plane of the region, the
compressive stress r

H
at x due to the hydrided region

is given by the sum of the separate contributions of
Equations 2 and 4, i.e.
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This is an expression which, in principle, gives r
H

for
any shape of symmetric hydrided region, i.e. for any

given relation between x

2
and x

1
.
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3. The special case of a constant thickness
hydrided region

For the special case of a hydrided region with constant
thickness t"2h and length 2¸, Equation 5 simplifies
to
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which simplifies with b"h/¸"t/2¸, to
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We are interested in the characteristics of a lenticular
region for which h/¸"b is small, when evaluation of
the integrals in Equation 7 to terms of order b easily
gives
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4. The special case of an elliptically
cylindrical hydrided region

For an elliptically cylindrical hydrided region whose
boundary is given by the equation

x2
1

¸2
#

x2
2

h2
"1 (9)

then again, with h/¸"b, and after substituting x
1
"

¸sin h and x
2
"¸ cos h, Equation 5 simplifies to
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Let the integral I be given by the expression

I"P
p/2

0

cos2 h (3b2 sin2 h#cos2 h) dh

(b2 sin2 h#cos2 h)2
(11)

which simplifies to

I"

P
p/2

0

(1#cos 2h) [(1#3b2)#(1!3b2) cos 2h]dh

[(1#b2)#(1!b2) cos 2h]2

(12)

whereupon the substitution /"2h gives
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with A"(1!3b2)/(1#3b2) and B"(1!b2)/(1#b2).
Thus

2(1#b2)2I

(1#3b2)

"P
p

0
Ga#

b

(1#Bcos /)
#

c

(1#Bcos /)2H d/ (14)

with

a"
A

B2

b"
(A#1)

B
!

2A

B2

c"1#
A

B2
!

(A#1)

B
H (15)

Evaluation of the integrals in Equation 14 gives
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whereupon Equations 15 and 16 give the integral I as
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Now let the integral J be given by the expression
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Evaluation of the integrals in Equation 21 gives
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It follows from Equations 10, 11, 17, 18 and 24 that
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simplifying when b"h/¸"t/2¸ is small, i.e. for a len-
ticular shaped hydrided region, to
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5. Application of Eshelby’s ellipsoidal
inclusion solutions

Eshelby [9] has presented a general analysis which
gives, as a special case, the (uniform) stresses and
strains within a two-dimensional elliptically cylin-
drical region which, when unconstrained, is subjected
to prescribed transformation strains. We are interest-
ed in the p

22
stress for the case where the elliptically

cylindrical hydrided region’s boundary is given by
Equation 9, with the cylinder axis being the x

3
axis,

when the unconstrained transformation strains are
e6
11

, e6
22

and e6
33

, the unconstrained transformation
shear strains being zero. In this case, the non-zero
strains are e#
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and e#
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stress is then given

by the relation
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where k and l are the Lamé constants, it being as-
sumed that the hydrided region and the surrounding
matrix have the same elastic constants. The non-zero
strains e#
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and e#
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are related to the unconstrained

transformation strains e6
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by the relations
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It follows from Equations 27—32, together with use of
the standard relations between the various elastic con-
stants, that the compressive stress r

H
"!p

22
within

the hydrided region, for the limiting case where h/¸ is
small, is given by the expression
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This expression is consistent with Equation 26 for the
special case where the strain e6

33
is zero.

6. Discussion
The analyses in this paper have shown, both for a con-
stant thickness hydrided region (Section 3) and an
elliptically cylindrical region (Sections 4 and 5), that
when the region is lenticular shaped as is the case in
practice, i.e. when the region length is large compared
with its thickness, then the compressive stress r

H
within the hydrided region is influenced by the
unconstrained transverse strains as well as the
unconstrained normal strain. This conclusion follows
automatically from Equation 8, for the case of a con-
stant thickness hydrided region, and from Equations
26 and 33 for the case of an elliptically cylindrical
region. The compressive stress r

H
refers to the region

centre, but the stress is the same at the positions
indicated (see Fig. 2) for hydrided regions at a free
surface, since the models of isolated regions can be cut
at their mid-points without affecting the results. Thus
Equation 8 gives the compressive stress r

H
at the

position x for a hydrided region of constant thickness
t"2h and length ¸ (Fig. 2a), while Equations 26 and
33 give r

H
at position x for an elliptically cylindrical

region of maximum thickness t"2h and length
¸ (Fig. 2b). These relations should also be approxim-
ately applicable for hydrided regions emanating from
a very blunt flaw provided that the ratio of hydrided
region length to flaw root radius is not too large.

Another important feature of this paper’s results is
that with regard to the modelling of DHC initiation at
a planar surface or at the surface of a very blunt notch,
the values of r

H
are approximately the same (see for

example Equation 33) irrespective of whether (a) the
overall unconstrained expansion strain (&17%) is
confined entirely to the normal direction [1], or (b) the

overall unconstrained expression strain is partitioned
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Figure 2 Hydrided regions at a planar surface: (a) constant thick-
ness region, (b) elliptically cylindrical region.

approximately equally between the three orthogonal
directions [6]. This means that the procedure adopted
by the author [2—5], somewhat fortuitously with hind-
sight, i.e. assuming a 17% strain in the normal direc-
tion with the transverse strains being zero, allows for
both possible precipitation strain scenarios.

Before closing this discussion, it is worth recording
that when the total hydride unconstrained expansion
strain is confined to the direction normal to a hy-
drided region, i.e. eu
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for a hydrided region with constant thickness t and
length 2¸, simplifying to [4]
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for an elliptically cylindrical region with thickness
t and length 2¸. Equations 35 and 36 apply to all
values of the ratio t/¸. Now in his modelling work
[2—5], the author has simplified the description of
a hydrided region associated with an unconstrained
expansion strain e6

22
, by replacing the dislocations

that are distributed along the boundary of the hy-
drided region by super-dislocations that lie along the
central plane x

2
"0 of the region. Thus, with regard

to a hydrided region of constant thickness t"2h and
length 2¸ in an infinite solid, there are two super-
dislocations each of total Burger’s vector e6

22
t situated

at the ends of the region and the compressive stress
r
H

at the region centre is then given by the very simple
expression
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Comparison of Equations 35 and 37 shows that the
super-dislocation description gives r

H
to an accuracy

of better than 1% when ¸/t'5, i.e. for a 2lm thick
hydrided region when ¸'10 lm. With a general
symmetrical hydrided region, if instead of the four
edge dislocations in Fig. 1, we have two edge disloca-
tions of Burger’s vector 2b

*
situated at a distance

x
1

from the centre of the region, either side of the
centre, and along the major axis x

2
"0, the compres-

sive stress r
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at x due to this super-dislocation de-
scription is
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a relation which arises from the first term on the
right-hand side of Equation 5 by allowing x

2
P0 in

the integral. This expression is clearly simpler than the
first term on the right-hand side of Equation 5, and
gives r

H
for any arbitrarily (albeit symmetric) shaped

hydrided region, i.e. for any given relation between
x
2

and x
1
. Thus with the elliptically cylindrical region

described by Equation 9, use of the super-dislocation
description gives the stress r

H
at the centre of the

region as (see Equations 9 and 38)
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whereupon comparison of Equations 36 and 39 shows
that the super-dislocation description again gives the
stress r

H
to an accuracy of better than 1% when

¸/t'5. In view of this agreement between the
r
H

values obtained using the super-dislocation ap-
proach and the exact values for, respectively, a con-
stant thickness hydrided region and an elliptically
cylindrical region, the super-dislocation procedure
can be used with confidence to give the stress r

H
in-

duced by the unconstrained expansion strain e6
22

, and
thereby used to assess the effect of the shape of a len-
ticular hydrided region on the criterion for the initia-

tion of delayed hydride cracking. Coupled with the
conclusion reached earlier in this paper, the implica-
tion is that the super-dislocation approach can be
used to provide a reasonable estimate for r

H
with

a generally shaped lenticular region that emanates
from a planar surface or very blunt flaw, if it transpires
that hydride precipitation is associated with essent-
ially a pure dilatation, rather than a normal strain, by
regarding the dilatation as a normal strain. The great
advantage of the super-dislocation approach is that it
is simple and therefore allows for a relatively simple
assessment of DHC initiation when a hydrided region
has a general shape.

7. Conclusions
1. Theoretical analyses have shown that with a len-

ticular shaped hydrided region, the compressive stress
r
H

induced within the region, as a consequence of the
unconstrained precipitation strains, is markedly in-
fluenced by the unconstrained transverse strains as
well as the unconstrained normal strain.

2. With regard to DHC initiation at a planar sur-
face or the surface of a very blunt flaw, the values of
r
H

are approximately the same irrespective of whether
(a) the overall unconstrained expansion strain asso-
ciated with hydride precipitation is confined entirely
to the normal direction or (b) the strain is partitioned
approximately equally between the three orthogonal
directions. This means that assuming the overall strain
is confined to the normal direction allows for both
precipitation strain scenarios.

3. This second conclusion highlights the usefulness
of the super-dislocation description of a lenticular
hydrided region for determining r

H
for a generally

shaped region.
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